Higher order Birkhoff averages
نویسندگان
چکیده
منابع مشابه
Higher Order Birkhoff Averages
There are well-known examples of dynamical systems for which the Birkhoff averages with respect to a given observable along some or all of the orbits do not converge. It has been suggested that such orbits could be classified using higher order averages. In the case of a bounded observable, we show that a classical result of G.H. Hardy implies that if the Birkhoff averages do not converge, then...
متن کاملSelf-similarity of higher-order moving averages.
In this work, higher-order moving average polynomials are defined by straightforward generalization of the standard moving average. The self-similarity of the polynomials is analyzed for fractional Brownian series and quantified in terms of the Hurst exponent H by using the detrending moving average method. We prove that the exponent H of the fractional Brownian series and of the detrending mov...
متن کاملIrregular Sets for Ratios of Birkhoff Averages Are Residual
It follows from Birkhoff’s Ergodic Theorem that the irregular set of points for which the Birkhoff averages of a given continuous function diverge has zero measure with respect to any finite invariant measure. In strong contrast, for systems with the weak specification property, we show here that if the irregular set is nonempty, then it is residual. This includes topologically transitive topol...
متن کاملMultifractal Analysis of Birkhoff Averages on ”self-affine” Symbolic Spaces
We achieve on self-affine Sierpinski carpets the multifractal analysis of the Birkhoff averages of potentials satisfying a Dini condition. Given such a potential, the corresponding Hausdorff spectrum cannot be deduced from that of the associated Gibbs measure by a simple transformation. Indeed, these spectra are respectively obtained as the Legendre transform of two distinct concave differentia...
متن کاملBirkhoff Averages for Hyperbolic Flows: Variational Principles and Applications
Abstract. We establish a higher-dimensional version of multifractal analysis for hyperbolic flows. This means that we consider simultaneously the level sets of several Birkhoff averages. Examples are the Lyapunov exponents as well as the pointwise dimension and the local entropy of a given measure. More precisely, we consider multifractal spectra associated to multi-dimensional parameters, obta...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Dynamical Systems
سال: 2009
ISSN: 1468-9367,1468-9375
DOI: 10.1080/14689360802676269